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1​ INTRODUZIONE 

1.1​ Il Progetto Karst Firewall 5.0 

Il regime degli incendi boschivi nell’area del Kras/Carso è influenzato dal cambiamento 
climatico in corso. È probabile che gli incendi diventino più frequenti e intensi a causa di 
diversi trend, come l’aumento delle temperature, ondate di calore prolungate e siccità 
(Dupuy et al., 2020). Le strategie attuali di gestione degli incendi stanno diventando meno 
efficaci, rendendo necessario esplorare nuove modalità di adattamento. Il progetto Karst 
Firewall 5.0 affronta due sfide presenti nell’area del programma: gli incendi boschivi e la 
gestione della governance degli stessi. Per affrontarli intende sviluppare piani di azione 
innovativi per preservare lo stato di salute del territorio carsico e massimizzarne la 
resilienza, ponendo uno sguardo al futuro. Data le caratteristiche transfrontaliere dell’area 
di studio nel paesaggio carsico tra Italia e Slovenia, è fondamentale promuovere la 
cooperazione tra entrambi i paesi per affrontare l'urgente necessità di ridurre il rischio di 
incendi e sviluppare strategie di risposta tempestive, come dimostrato dall'importante 
incendio dell'estate 2022. 

Il progetto intende aprire la strada non solo a un maggiore dialogo e a una maggiore 
cooperazione tra gli attori direttamente coinvolti nella gestione e nell'attuazione delle 
strategie di risposta agli incendi boschivi dai due lati del confine, ma anche tra gli attori di 
diversi settori, nonché la comunità in generale che sono in qualche modo coinvolti negli 
impatti che ne derivano. In questo modo, il progetto Karst Firewall potrebbe essere davvero 
determinante per lo sviluppo di un efficace meccanismo transfrontaliero di prevenzione e 
gestione degli incendi boschivi, grazie al fatto che tutti gli attori coinvolti, dai singoli cittadini 
e utenti del territorio ai decisori di alto livello, svolgono un ruolo molto importante e 
complementare a questo obiettivo. 

Il Work Package 1 del progetto Karst Firewall 5.0 è intitolato “Come renderlo meno 
infiammabile: un quadro concettuale per la riduzione del rischio di incendi transfrontalieri 
nel Carso” e mira a sviluppare un quadro concettuale per promuovere la riduzione del 



 

rischio di incendi boschivi attraverso la creazione di una collaborazione transfrontaliera per 
un'efficace gestione adattiva degli incendi boschivi nelle regioni carsiche. Ciò include 
l’elaborazione di specifiche analisi spaziali che analizzano il pericolo di incendi boschivi, 
attuale e nel futuro prossimo secondo i dati fornitici dalle proiezioni climatiche e la 
vulnerabilità del territorio nell’area di progetto, oggetto di questo deliverable. A tale scopo, 
sono stati selezionati e testati due approcci: l’analisi tramite modellazione di Massima 
Entropia (MaxEnt) per la valutazione del pericolo di incendi boschivi (di seguito definita 
come pericolo) e l’Analisi Decisionale Multi-criteriale (MCDA) per l’analisi della 
vulnerabilità del territorio agli incendi (di seguito vulnerabilità). 

La modellazione con MaxEnt ha guadagnato una vasta popolarità grazie alla sua relativa 
semplicità ed è ampiamente utilizzata, soprattutto nei campi dell'ecologia e della 
biogeografia (Phillips et al., 2006). Tuttavia, questi metodi di modellazione ecologica, come 
MaxEnt, i modelli lineari generalizzati (GLM) o i modelli additivi generalizzati (GAM), si sono 
già dimostrati efficaci anche in altri campi per prevedere la distribuzione spaziale di 
determinati fenomeni e comprendere i i pattern spaziali dei processi naturali. Ad esempio, la 
modellazione con MaxEnt è stata utilizzata per prevedere la distribuzione spaziale di grotte 
che identificano le aree del più critiche per il flusso delle acque sotterranee nel sistema 
carsico (Blitch et al., 2023). Negli ultimi anni, MaxEnt è stato utilizzato con successo anche 
per valutare il rischio, la vulnerabilità e la probabilità di incendi boschivi in ambienti diversi, 
performando in alcuni studi comparativi meglio di algoritmi di Random forest e modelli GLM 
(Kim et al., 2019; Mishra et al., 2023; Paudel et al., 2024; Vilar et al., 2016; Yang et al., 2021). 

L'analisi di vulnerabilità agli incendi boschivi richiede la valutazione di fattori diversi che 
possono concorrere a determinarlo. Poiché questi fattori sono eterogenei, caratterizzati da 
un certo grado di importanza relativa e misurati con unità di misura diverse, per identificare 
le aree di maggiore o minore vulnerabilità agli incendi è stato scelto l'approccio dell'analisi 
decisionale multi-criteriale (MCDA) applicato a valutazioni spazialmente esplicite con sistemi 
informativi geografici (GIS) (Malczewski, 2006). Nell'ambito dell'MCDA, il metodo Analytic 
Hierarchy Process (AHP), uno dei metodi più diffusi per valutare l'importanza relativa di tutti 
i fattori analizzati (Gigović & Jakovljević, 2018; Goleiji et al., 2017; Maniatis et al., 2022; 
Sivrikaya & Küçük, 2022) è stato utilizzato per assegnare i pesi rappresentanti l'importanza 



 

relativa di tutti i fattori selezionati. L'AHP è stato teorizzato per la prima volta da Saaty (2002) 
per confrontare i diversi criteri in un MCDA e fornire un metodo matematico per 
quantificare le valutazioni soggettive della loro relativa importanza. 

2​ L’AREA DI STUDIO 

L’area di studio comprende la regione storico-geografica dell’altopiano carsico (denominato 
Carso in Italia e Kras in Slovenia) e le sue aree limitrofe, abbracciando il nord del Mare 
Adriatico. L’area di studio si estende per circa 1000 km², ricadendo approssimativamente per 
il 30% in Italia e per il 70% in Slovenia. L’area è compresa tra le coordinate geografiche 13,47 
long., 45,55 lat. e 14,05 long., 45,96 lat. (EPSG:4326-WGS84). L'area è caratterizzata sia da 
climi mediterranei superiori, sulla costa, sia da zone fitoclimatiche più continentali sul 
versante interno. Il Carso è un classico esempio di altopiano a substrato calcareo, che si 
innalza rapidamente dalla costa fino a 350 m s.l.m., con creste collinari che raggiungono i 
400-700 m s.l.m.. La vegetazione varia dalle macchie costiere di leccio mediterraneo 
(Quercus ilex) alle associazioni di carpino nero (Ostrya carpinifolia) e frassino (Fraxinus 
ornus), dominate dalla roverella (Quercus pubescens) che ricopre sempre la landa carsica 
sull’altopiano, sempre di più in stato di abbandono (Oriolo et al., 2021). Sono comuni 
macchie di foreste di pino nero (Pinus nigra), specie non autoctona importata con gli sforzi 
di rimboschimento della landa carsica risalenti al XIX secolo. 



 

 

Figura 1 L’area di studio. A sinistra la parte ricadente in Italia, a destra in Slovenia.  



 

3​ MATERIALI E METODI 

Questo lavoro ha eseguito due analisi: Il pericolo di incendi boschivi basata sulla 
modellazione di Massima Entropia (MaxEnt) e la vulnerabilità agli incendi boschivi basata 
sull'Analisi Decisionale Multicriteriale (MCDA) utilizzando l’Analytic Hierarchy Process (AHP). 
Prima di eseguire le analisi sono state selezionate, sulla base dei dati transfrontalieri 
disponibili (e comparabili), le variabili esplicative che concorrono all'innesco e alla diffusione 
degli incendi. 

3.1​Le variabili esplicative 

Sulla base di una revisione della letteratura (Gigović & Sekulović, 2018; Maniatis et al., 2022; 
Mishra et al., 2023; Nuthammachot & Stratoulias, 2021; Sivrikaya & Küçük, 2022; Trucchia et 
al., 2022, 2023; Yang et al., 2021), sono state selezionate 11 variabili esplicative che sono 
state utilizzate per la modellazione e le analisi in quanto potenziali fattori che influenzano il 
pericolo e la vulnerabilità agli incendi boschivi. Tra queste vi sono delle variabili che 
riflettono le caratteristiche antropiche (la distanza da ferrovie, strade (strade principali, 
strade forestali e sentieri escursionistici) e insediamenti), ambientali (copertura del suolo), 
climatiche (precipitazioni e temperatura) e topografiche (aspetto, elevazione, pendenza, 
Indice di Posizionamento Topografico (TPI, Topographic Position Index), Indice Topografico di 
Saturazione (TWI, Topographic Wetness Index), un indice della saturazione del versante). 
L'elenco delle variabili, con la fonte dei dati, è riportato nella Tabella 1. Tutte le variabili sono 
state elaborate con i software ESRI ArcGIS Pro 3.4.0 (ESRI, Redlands, CA, USA) e QGIS 3.40.4 
(QGIS Development Team, 2025). 

A causa della natura transfrontaliera dell'area di studio, sono state incontrate alcune sfide 
nella raccolta e nella standardizzazione dei dati di input. Al fine di ottenere la massima 
risoluzione possibile, abbiamo cercato di ottenere il maggior numero possibile di dati da 
banche dati locali, nazionali o regionali (Tabella 1). I dati che riflettono le caratteristiche 
antropiche sono stati forniti dall'Autorità di rilevamento e cartografia della Repubblica di 
Slovenia (GURS) e dall'Infrastruttura per i dati ambientali e territoriali (IRDAT) della Regione 



 

autonoma Friuli-Venezia Giulia (RAFVG). Tuttavia, poiché Openstreetmap (OSM) contiene 
una rappresentazione più completa dei sentieri escursionistici, sia in Italia che in Slovenia, i 
layer delle strade è stato integrato con elementi scaricati dal database OSM. 

I layer delle variabili antropiche, disponibili in formato vettoriale sia per la parte italiana che 
per quella slovena, sono stati prima uniti in un unico layer contenente tutta l’area di studio 
successivamente rasterizzati. Per ottenere le variabili della distanza dalle strade e dalle 
ferrovie è stato utilizzato l’algoritmo di distanza euclidea. Per elaborare invece il layer di 
copertura del suolo, si è scelto di ricorrere ai dati di copertura del suolo nazionali e regionali, 
che hanno una risoluzione significativamente più alta rispetto alla carta europea Corine 
Land Cover (CLC). Quest'ultima è stata comunque sfruttata per la sua definizione unitaria di 
ciascuna categoria di copertura del suolo applicata poi al layer italiano e sloveno. Così è 
stato possibile dopo la fusione dei due layer assegnare dalla classificazione CLC la corretta 
definizione corrispondente di copertura del suolo. Inoltre, le aree che rientravano nella 
categoria di copertura forestale sono state rimosse dal layer unificato e sostituite con gli 
elementi della carta di tipo forestale ad alta risoluzione Copernicus Forest Type, che 
identifica più accuratamente, grazie ad immagini satellitari, fino a piccole macchie di foresta 
distinguendone il tipo prevalente, latifoglie o conifere. 

A causa delle diverse caratteristiche spazio-temporali dei dati climatici nazionali e regionali 
per l'Italia e la Slovenia, si è deciso di utilizzare i dati forniti dal progetto CHELSA Climate sia 
per le serie storiche climatiche più recenti (1981-2010) che per le proiezioni climatiche del 
prossimo futuro (2011-2040) (Brun et al., 2022; Karger et al., 2017). Poiché i dati climatici 
erano disponibili ad una risoluzione di 1 km × 1 km, sono stati successivamente ricampionati 
ad una risoluzione di 3 m × 3 m. Il modello digitale del terreno (DTM) con una risoluzione di 
cella di 1 m × 1 m, fornito dall'Agenzia slovena per l'ambiente (ARSO) e dall'IRDAT FVG, è 
stato utilizzato per calcolare le caratteristiche topografiche (Tabella 1). Tutte le variabili sono 
state poi estratte alla stessa estensione dell'area di studio e ricampionate alla stessa 
risoluzione (cioè 3 m × 3 m). Lo strumento Raster to ASCII è stato utilizzato per esportare gli 
strati raster in formato leggibile da MaxEnt (cioè .ascii). 



 

Utilizzando due diversi test in ArcGIS Pro, è stata verificata anche la collinearità tra le 
variabili, allo scopo di identificare le variabili potenzialmente molto correlate che avrebbero 
causato una doppia valutazione degli stessi fattori. È stato utilizzato lo strumento “Band 
collection statistics” per produrre la matrice di correlazione e lo strumento “Ordinary Least 
Squares (OLS)” per ottenere informazioni sul fattore di inflazione della varianza (VIF). Poiché 
entrambi i test di collinearità hanno mostrato che due variabili sono correlate (cioè 
l’altitudine e la temperatura, Tabella 4 e 5), è stato deciso di eliminare dalle analisi la 
variabile altitudine e di mantenere la temperatura. 

Tabella 1: Elenco delle variabili con la fonte dei dati 
  Variabile Fonte del dato SLO Fonte del dato ITA 

Antrop
iche 

Distanza da strade, strade 
boschive e sentieri Dati forniti dall’Autorità di 

Geografia della Repubblica 
Slovenia (GURS), 
Openstreetmap 

RAFVG, ISPRA e Insiel 
S.p.a., Openstreetmap 

Distanza da ferrovie 

Distanza da insediamenti 

Ambie
ntali Copertura del suolo 

Dati forniti dal Ministero 
dell’Agricoltura, delle 

Foreste e dell’Almentazione 
(MKGP), Corine Land Cover 

(CLC) 

RAFVG, Corine Land Cover 
(CLC) 

Climat
iche 

Precipitazione media annua 
(1981–2010) 

CHELSA Climate (Brun et al., 2022; Karger et al., 2017) 

Temperatura media annua 
(1981–2010) 
Precipitazione media annua 
(2011–2040) 
Temperatura media annua 
(2011–2040) 

 

 



 

  Variabile Fonte del dato SLO Fonte del dato ITA 

Topogr
afiche 

Orientamento del terreno 

Dati Lidar (risoluzione 1 × 
1 m) forniti dall’Agenzia 

della Repubblica Slovenia 
per l’Ambiente (ARSO) 

Dati Lidar (risoluzione 1 x 
1 m cell) forniti dalla 

RAFVG 

Altitudine 

Pendenza 

Indice di Posizonamento 
Topografico (TPI) 
Indice Topografico di 
Saturazione (TWI) 

 

 

 

 

Tabella 2: Matrice di correlazione delle variabili predittive: 1 – Orientamento del terreno, 2 – Altitudine, 3 – Copertura del suolo, 4 – 
Precipitazioni, 5 – Distanza da ferrovie, 6 – Distanza da strade, 7 – Pendenza, 8 – Distanza da insediamenti, 9 – Temperatura, 10 – 

TPI, 11 – TWI 

 

Tabella 3: Valori VIF (fattore di inflazione della varianza) delle variabili predittive. 

Variabil
e 

1 2 3 4 5 6 7 8 9 10 11 

1 1 -0,02 -0,05 -0,06 -0,01 -0,02 -0,01 -0,05 0,03 0,01 -0,00 

2 -0,02 1 0,31 0,25 0,32 0,09 0,11 0,44 -0,94 0,10 -0,03 

3 -0,05 0,31 1 0,19 0,17 0,09 0,25 0,39 -0,29 0,02 -0,08 

4 -0,06 0,25 0,19 1 0,07 0,15 0,06 0,16 -0,41 0,01 -0,05 

5 -0,01 0,32 0,17 0,07 1 0,12 0,10 0,22 -0,40 0,02 -0,01 

6 -0,02 0,09 0,09 0,15 0,12 1 -0,02 0,18 -0,15 0,02 0,01 

7 -0,01 0,11 0,25 0,06 0,10 -0,02 1 0,06 -0,14 -0,12 -0,37 

8 -0,05 0,44 0,39 0,16 0,21 0,18 0,06 1 -0,41 0,04 -0,00 

9 0,03 -0,94 -0,29 -0,41 -0,40 -0,15 -0,14 -0,41 1 -0,04 0,02 

10 0,01 0,10 0,02 0,01 0,02 0,02 -0,12 0,04 -0,04 1 -0,27 

11 -0,00 -0,03 -0,08 -0,05 -0,01 0,01 -0,37 -0,00 0,02 -0,27 1 



 

Variabile VIF 

Orientamento del terreno 1,02 

Altitudine 18,43 

Copertura del suolo 1,07 

Precipitazioni 2,36 

Distanza da ferrovie 1,15 

Distanza da strade 1,10 

Pendenza 1,22 

Distanza da centri abitati 1,24 

Temperatura 22,87 

TPI 1,25 

TWI 1,26 

3.2​Punti di innesco degli incendi boschivi storici 

Per la modellazione MaxEnt e la validazione della valutazione della vulnerabilità sono stati 
utilizzati i punti di innesco degli incendi boschivi raccolti dal Servizio Forestale della Slovenia 
e dall'IRDAT. Il set di dati conteneva i punti di innesco di 2367 incendi, di cui 724 raccolti nel 
periodo 1994-2024 per la parte slovena e 1643 punti nel periodo 1990-2024 per la parte 
italiana. 

Siccome i punti di innesco degli incendi si verificano con densità più elevate in determinate 
aree, il set di dati è stato filtrato spazialmente al fine di evitare di influenzare eccessivamente 
il modello verso determinate località a causa dell'autocorrelazione spaziale. Il set di dati è 
stato filtrato in base allo strumento “Spatially rarefy occurrence data tool” del SDM toolbox 
per ArcGIS Pro (Brown, 2014), che consente di ridurre i punti di accensione a un singolo 
punto entro la distanza euclidea specificata (Brown, 2014). Sono state applicate inizialmente 
tre diverse soglie di distanza (100, 250 e 500 m) trovando più adeguata la soglia di 250 m. A 
una distanza di 100 m, i cluster erano infatti ancora visibili, mentre a 500 m i dati erano 
troppo rarefatti (Tabella 6). I punti di innesco così filtrati (soglia di 250 m) sono stati esportati 
in un file .csv con tre colonne: specie (nel nostro caso riferentesi all’ “incendio”), longitudine e 
latitudine. 



 

Tabella 4: Numero di duplicati rimossi, punti spazialmente autocorrelati rimossi e punti nel dataset finale per tre diverse soglie di 
distanza (100, 250 e 500 m) mediante lo strumento di dati di occorrenza di rarefazione spaziale. 

 
Numero di duplicati 

rimossi 

Numero di punti 
spazialmente autocorrelati 

rimossi 

Numero di punti nel 
dataset finale 

soglia di 100 m  9 583 1775 

soglia di 250 m 9 1152 1206 

soglia di 500 m 9 1614 744 

3.3​  Modellazione MaxEnt per la valutazione del pericolo di incendi 
boschivi 

MaxEnt è uno strumento software di machine learning di uso generico, sviluppato 
principalmente per la modellazione della distribuzione di specie. In sostanza, MaxEnt stima 
la probabilità della presenza di un determinato fenomeno (come ad esempio una specie 
target) sulla base di luoghi noti in cui esso si manifesta e di un set di variabili esplicative, 
utilizzando un approccio di massima entropia (Phillips, 2017; Phillips et al., 2006; Phillips & 
Dudík, 2008). La modellazione MaxEnt presenta molti vantaggi: il software è facile da usare, 
consente di utilizzare dati di presenza di un fenomeno (ma non di assenza) e di lavorare con 
piccoli campioni di dati. Supporta l'uso di variabili sia continue che categoriche, produce 
direttamente una mappa di idoneità spazialmente esplicita e l'importanza relativa delle 
singole variabili può essere facilmente valutata utilizzando il “Jackknife test” integrato 
(Phillips, 2017; Phillips et al., 2006; Phillips & Dudík, 2008). Oltre ai numerosi vantaggi, sono 
stati identificati alcuni punti deboli della modellazione MaxEnt, tra cui l'overfitting, la 
distorsione dei dati di presenza e i metodi di valutazione delle prestazioni del modello sono 
oggetto di discussione (Phillips et al., 2009; Phillips & Dudík, 2008). 

Per modellare una previsione con MaxEnt, sono necessari due tipi di dati. Il primo è la 
presenza/distribuzione nota del fenomeno che si vuole prevedere (nel nostro caso, i punti 
campione dei luoghi di innesco degli incendi all'interno dell'area di studio, ciascuno definito 
da latitudine e longitudine), e il secondo le variabili che descrivono le caratteristiche dell'area 



 

di studio già menzionate all'interno dell'estensione di distribuzione del fenomeno studiato 
(Merow et al., 2013; Phillips et al., 2006). Nella modellazione, l'estensione delle celle raster 
definisce l'area per la quale MaxEnt definirà la distribuzione di probabilità. I punti di 
presenza sono assegnati alle celle raster e questo rappresenta i punti campione per il 
modello. Lo strumento genera quindi nell'estensione dell'area di studio una serie di punti di 
sfondo che rappresentano i luoghi in cui la presenza del fenomeno è possibile ma 
sconosciuta. I punti di sfondo sono utilizzati per modellare le caratteristiche del territorio 
nelle località di presenza ignota e confrontarle con quelle del territorio nelle località di 
presenza note (Merow et al., 2013; Phillips et al., 2006). Il modello richiede che i dati delle 
variabili utilizzino la stessa estensione e risoluzione per ogni cella (Phillips, 2017). 

Per la modellazione MaxEnt è stato utilizzato lo strumento Java open-source MaxEnt (ver. 
3.4.4) (Phillips et al., 2017). Nello strumento abbiamo selezionato la generazione di curve di 
risposta, del test Jackknife e le immagini delle previsioni. Come formato dei dati di output 
abbiamo selezionato il cloglog predefinito, che fornisce una stima tra 0 e 1 della probabilità 
di presenza ed è il più facile da interpretare (Phillips, 2017). Nelle impostazioni di base è 
stato impostato il moltiplicatore di regolarizzazione a 1,5 per evitare l'overfitting e ottenere 
una previsione più diffusa e meno localizzata. Al fine di valutare l'idoneità del modello, è 
stato utilizzato un metodo di convalida incrociata k-fold, in cui i dati di presenza vengono 
suddivisi in modo casuale in un certo numero di gruppi di dimensioni uguali per 
l'addestramento e per il test, e i modelli vengono creati tralasciando a turno ogni gruppo. 
Questo metodo di validazione utilizza poi i gruppi che sono stati esclusi per la valutazione 
del modello (Phillips, 2017) scegliendo cinque repliche (k = 5) di convalida incrociata. Le altre 
impostazioni erano predefinite. 

Per valutare il rischio di incendi nelle condizioni climatiche future, è stata scelta 
l’impostazione “Projection” per una previsione semplicistica del cambiamento climatico. 
Abbiamo impostato la “directory Projection layers” sulla cartella contenente gli stessi dati 
ambientali della directory “Layers”, dove le variabili di precipitazione e temperatura 
contenevano i valori climatici futuri (2011-2040).  



 

3.4​Valutazione della vulnerabilità con approccio MCDA/AHP 

Per valutare la vulnerabilità basata sul metodo MCDA, è stato innanzitutto necessario 
uniformare le variabili predittive per poterle comparare. A questo scopo, ognuna è stata 
suddivisa in 5 classi (in base agli intervalli di valori continui o alle categorie se variabili 
discrete) alle quali sono stati assegnati dei valori di vulnerabilità, dall’1 (vulnerabilità bassa) 
al 5 (vulnerabilità estremamente elevata) (Tabella 5). Per questa procedura ci si è basati sulla 
letteratura esistente, considerando le modalità con cui studi simili hanno classificato le 
diverse variabili in classi di vulnerabilità/rischio di incendi boschivi (ad esempio, Djabri et al., 
2024; Gigović et al., 2018; Maniatis et al., 2022; Sivrikaya & Küçük, 2022), adattandole 
eventualmente alla distribuzione dei dati e alle specificità dell'area di studio (Tabella 6). 

Tabella 5: Classi di vulnerabilità. 

1 Vulnerabilità bassa 

2 Vulnerabilità moderata 

3 Vulnerabilità elevata 

4 Vulnerabilità significativamente elevata 

5 Vulnerabilità estremamente elevata 

In secondo luogo, per ogni variabile è stato prodotto un raster georiferito con una 
risoluzione di 3 m × 3 m ottenendo così una griglia dove a ogni pixel corrispondesse il 
rispettivo valore di vulnerabilità. Per ottenere la carta di vulnerabilità finale, i 10 raster delle 
singole variabili, classificati con i rispettivi punteggi di vulnerabilità, sono stati sovrapposti 
utilizzando il metodo della somma ponderata, secondo la seguente formula, dove m, n, p e q 
rappresentano i coefficienti di ponderazione assegnati metodo AHP: 

Vulnerabilità agli incendi = m × fattori antropici + n × fattori climatici + p × 
fattori topografici + q × fattori ambientali  



 

Tabella 6 Elenco delle variabili raggruppate per categoria, con range di dati e classi di vulnerabilità 

  Variabile Range (min–max) Classi Vulnerabilità 
(1, bassa - 5, elevata) 

An
tro
pic
he 

Distanza da strade, 
strade forestali e 

sentieri 
0–1266,43 m 

0–200 m 5 
400–600 m 4 
600–800 m 3 
800–1000 m 2 
> 1000 m 1 

Distanza da 
ferrovie 

0–11.389,14 m 

0–100 m 5 
100–200 m 4 
200–500 m 3 
500–1000 m 2 
> 1000 m 1 

Distanza da 
insediamenti 

0–2509,65 m 

0–500 m 5 
500–1000 m 4 
1000–1500 m 3 
1500–2000 m 2 
> 2000 m 1 

Am
bie
nta

li 

Copertura del suolo / 

1: artificial surface 1 
2: agriculture 2 
3: seminatural area, 
overgrown agricultural 
land, transitional 
shrubland 

3 

4: deciduous forest 4 
5: coniferous forest 5 
6: other natural areas (bare 
rock, marsh, ...) 

2 

7: water 0/N/A 

Cli
ma
tic
he 

Precipitazioni 
medie annue 
(1981–2010) 

1344,8 - 2365,83 
mm 

0–1500 mm 5 
1500–1700 mm 4 
1700–1900 mm 3 
1900–2100 mm 2 
> 2100 mm 1 

Temperatura media 
annua (1981–2010) 

9.5–14,6 °C 

9.5–10.5 °C 1 
10.5–11.5 °C 2 
11.5–12.5 °C 3 
12.5–13.5 °C 4 



 

  Variabile Range (min–max) Classi Vulnerabilità 
(1, bassa - 5, elevata) 

> 13.5 °C 5 

Precipitazioni 
medie annue 
(2011–2040) 

1423,8–2520,3 mm 

0–1500 mm 5 
1500–1700 mm 4 
1700–1900 mm 3 
1900–2100 mm 2 
> 2100 mm 1 

Temperatura media 
annua (2011–2040) 

11,1–16,2°C 

9.5–10.5 °C 1 
10.5–11.5 °C 2 
11.5–12.5 °C 3 
12.5–13.5 °C 4 
> 13.5 °C 5 

To
po
gra
ich
e 

Orientamento del 
terreno 

0–360° 

337.5 – 67.5° 1 
67.5 – 112.5°, 292.5 – 
337.5° 

2 

112.5 – 157.5° 3 
247.5 – 292.5° 4 
157.5 – 247.5° 5 

Pendenza 0–83,17° 

<5% 1 
5 - 15% 2 
15 - 25% 3 
25 – 35% 4 
>35% 5 

Indice di 
Posizionamento 
Topografico (TPI) 

-339,54–48,54 

1: < -1 = valle/depressione 1 
2: -1– -0.5 = terreno piano 
o quasi 

2 

3: -0.5–0.5 = pendio 
moderato 

3 

4: 0.5–1 = pendio scosceso 4 
5: > 1 = cresta 5 

Indice Topografico 
di Saturazione (TWI) 

-2,39–25,48 

< 5 5 
5–6.5 4 
6.5–8.5 3 
8.5–12 2 
> 12 1 

 

 



 

Nell'AHP, il peso per ricavare l'importanza relativa di ogni variabile è calcolato sulla base di 
una matrice di confronto a coppie, in cui ogni criterio (cioè, variabile) viene confrontato con 
gli altri assegnandogli un valore di importanza relativa. Questi valori vanno da 1 (uguale 
importanza) a 9 (importanza assoluta), come mostrato nella Tabella 7, e descrivono il 
giudizio di importanza relativa. I valori intermedi 2, 4, 6 e 8 si riferiscono a situazioni 
intermedie. Al contrario, la stessa scala con I valori reciproci (da 1 a 1/9) viene utilizzata per 
descrivere il giudizio di importanza se il criterio di riferimento è meno importante di quello 
con il quale lo si confronta. 

Tabella 7: Valori di importanza relativa per il confronto a coppie dell’AHP. 

Valore di importanza Definizione 

1 Uguale importanza 

3 Importanza moderata 

5 Importanza forte 

7 Importanza molto forte 

9 Importanza assoluta 

 
Il confronto a coppie è stato eseguito in due fasi: nella prima sono state confrontate le 
variabili all'interno di ciascuna categoria, e nella seconda è stato eseguito il confronto a 
coppie complessivo tra le quattro categorie (Figura 2). 
 

 
Figura 2 Struttura dell’AHP, in verde le categorie che comprendono le variabili sottostanti. 

 
 



 

 
Sono state costituite di conseguenza, quattro matrici di confronto a coppie: 
 
▪ Matrice di confronto a coppie delle categorie; 
▪ Matrice di confronto a coppie delle variabili antropiche; 
▪ Matrice di confronto a coppie delle variabili topografiche; 
▪ Matrice di confronto a coppie delle variabili climatiche. 
 
Il peso di ogni singola variabile nell'equazione finale è quindi il prodotto del peso ottenuto 
dalla variabile nella matrice di confronto all'interno della propria categoria e di quello 
ottenuto dalla categoria nella matrice di confronto con tutte le altre categorie. L'unica 
eccezione è la variabile relativa alla copertura del suolo, che essendo unica nella propria 
categoria di variabili ambientali non è stata sottoposta alla prima fase di confronto. 
L'assegnazione dei giudizi di importanza relativa nelle matrici di confronto a coppie si è 
basata sulla revisione della letteratura e concordata tra i ricercatori che hanno partecipato a 
questa attività. La coerenza tra tutti i giudizi è stata misurata anche con l'indice di coerenza, 
considerato accettabile se inferiore a 0,01 (Saaty, 2002). 
 
Una volta ottenuti tutti i pesi e verificata la coerenza, tutte le variabili sono state sommate 
spazialmente secondo la formula sopra menzionata, generando una carta di vulnerabilità in 
formato raster con valori continui adimensionali compresi tra 0 e 5. Questo raster è stato 
infine categorizzato nelle 5 classi di vulnerabilità complessive: 
 
▪ 0-1 = Bassa vulnerabilità 
▪ 1-2 = Vulnerabilità moderata 
▪ 2-3 = Alta vulnerabilità 
▪ 3-4 = Vulnerabilità significativamente elevata 
▪ 4-5 = Vulnerabilità estremamente elevata 

 



 

RISULTATI E DISCUSSIONE 

3.5​Analisi del pericolo di incendi boschivi 

Le prestazioni del modello complessivo sono state valutate sulla base dell'AUC (area sotto la 
curva Receiver Operating Characteristic (ROC)). Il valore medio dell’AUC per le cinque iterazioni 
del modello è di 0,754 con una deviazione standard di 0.014. Dato che questo valore supera 
la soglia di 0,75, i risultati della modellazione del pericolo di incendi boschivo possono 
considerarsi statisticamente validi. I valori AUC delle 5 iterazioni del modello sono presentati 
nella tabella 8. 

 
Figura 3 Curva ROC (Receiver Operating Characteristic) con il valore medio di AUC (Area sotto la curva) dei cinque modelli. La linea 

rossa mostra il valore AUC medio delle cinque iterazioni del modello per i dati di addestramento, mentre la linea blu mostra i 
valori medi ± la deviazione standard dei dati di test. La linea nera rappresenta la previsione casuale 

 

Tabella 8: I valori AUC per I dataset di apprendimento e di test per tutti e 5 i modelli. 



 

Modello 1 2 3 4 5 

Dataset di 
apprendimento 

0.762 0.768 0.764 
0.761 0.766 

Dataset di test 0.766 0.735 0.760 0.768 0.740 

Per valutare l'impatto di ciascuna variabile sul modello, sono stati analizzati i seguenti 
parametri: il contributo di ciascuna variabile (%) alla previsione finale, la significatività delle 
variabili secondo il test Jackknife e le rispettive curve di risposta. Il contributo più elevato è 
riconducibile alle variabili antropiche e ambientali, ovvero alla distanza dalle strade (50,6%), 
alla copertura del suolo (16,3%) e alla distanza dalle ferrovie (16,1%) (Tabella 9). Le 
caratteristiche topografiche (esposizione, TPI e TWI) hanno avuto invece il contributo più 
basso (Tabella 9). 

Tabella 9: Contributo e importanza della permutazione di ciascuna variabile al pericolo di incendio nel modello MaxEnt. 

 

 

 

 

 

 

 

 

I risultati del test Jackknife mostrano l'importanza delle variabili per il modello (Fig. 4). Nel 
test Jackknife di training, test e AUC, la variabile con la performance più elevata quando 
utilizzata isolatamente è la distanza dalle strade, che sembra contenere da sé quindi le 
informazioni più importanti. Analogamente, la previsione del modello ha avuto meno 
successo in assenza della stessa variabile, il che significa che questa variabile contiene 
informazioni che le altre non contengono. La linea rossa indica le prestazioni del modello 
considerando tutte le variabili. Confrontando i grafici dei dati di training e test, si nota che le 

Variabile 
Contributo percentuale 

(%) 
Importanza della Permutazione 

(%) 
Distanza da strade 50.6 44.9 

Copertura del suolo 16.3 16.2 

Distanza da ferrovie 16.1 12.7 

Precipitazioni 7.0 11.6 

Temperatura 2.8 4.5 

Pendenza 2.8 3.5 

Distanza da 
insediamenti 

2.7 4.0 

Orientamento del 
terreno 

0.9 1.8 

TPI 0.7 0.6 

TWI 0.1 0.2 



 

prestazioni complessive dei dati di test sono leggermente superiori. La significatività delle 
singole variabili nei due grafici è molto simile (Fig. 4). 



 

 
Figura 4 Risultati del test di Jackknife per i dataset di apprendimento, test e l’AUC. 



 

L'analisi produce curve di risposta per ciascuna variabile utilizzata nella modellazione sotto 
forma di grafico e mostra come la probabilità di presenza prevista cambia al variare di 
ciascuna variabile, mantenendo tutte le altre variabili al loro valore medio campionario 
(Phillips, 2017). Sulla base delle curve di risposta presentate in Figura 5, possiamo osservare 
che la probabilità prevista di un incendio boschivo è più elevata tra i valori di esposizione di 
150° e 250°, rispettivamente. Ciò indica che la probabilità è maggiore nelle aree esposte a 
sud e sud-ovest, mentre è minore nelle aree esposte a nord (rispettivamente intorno a 0° e 
360°). 

Il pericolo di incendio boschivo è più elevato (> 60%) nelle categorie di copertura del suolo 3, 
5 e 6, che rappresentano aree incolte e seminaturali, foreste di conifere e altre aree naturali. 
D'altra parte, la probabilità è minore (< 30%) nella categoria di copertura del suolo 1 
(superfici artificiali). 

La curva di risposta mostra che la probabilità di incendio boschivo è massima a bassi livelli di 
precipitazione, diminuisce con l'aumentare delle precipitazioni e poi aumenta nuovamente 
con precipitazioni molto elevate (rispettivamente 2200 mm). Questo aumento finale 
potrebbe essere dovuto agli effetti della topografia che influenzano il rischio di incendio 
boschivo (ad esempio, un'elevata frequenza storica di incendi boschivi a quote più elevate, 
soggette a maggiori precipitazioni). La curva di risposta mostra che la probabilità di incendio 
boschivo è massima a bassi livelli di precipitazione, diminuisce con l'aumentare delle 
precipitazioni e poi aumenta nuovamente con precipitazioni molto elevate (rispettivamente 
2200 mm). Questo aumento finale potrebbe essere dovuto agli effetti della topografia che 
influenzano il rischio di incendio boschivo (ad esempio, un'elevata frequenza storica di 
incendi boschivi a quote più elevate, soggette a maggiori precipitazioni). 

L'analisi della probabilità di incendio evidenzia una forte correlazione negativa tra la 
distanza da ferrovie e strade e pericolo di incendio, segno che la vicinanza alle infrastrutture 
di trasporto ha un impatto importante sugli incendi boschivi. Analogamente, la probabilità di 
incendio boschivo prevista diminuisce con l’aumentare della distanza dagli insediamenti. 



 

La curva di risposta mostra che la probabilità di incendio boschivo è minima sui terreni 
pianeggianti, aumenta rapidamente sui pendii dolci (rispettivamente 0-10°C) per diminuire 
gradualmente sui pendii più ripidi. Ciò suggerisce che il rischio di incendio boschivo è più 
probabile nelle aree con pendenze moderate. 

La probabilità di incendio boschivo aumenta con la temperatura, raggiungendo un picco 
rispettivamente intorno a 11,5-12°C, per poi diminuire gradualmente a temperature più 
elevate. Ciò indica che temperature moderate favoriscono il verificarsi di incendi boschivi, 
probabilmente a causa delle condizioni ottimali per l'essiccazione della vegetazione, mentre 
temperature più basse e più alte potrebbero essere meno favorevoli agli incendi a causa 
della ritenzione idrica o di altri fattori climatici. 

La curva di risposta per il TWI, simile a quella della temperatura, suggerisce che la 
probabilità di incendio boschivo aumenta a livelli di umidità moderati, raggiunge il picco a un 
valore di TWI intermedio e poi diminuisce con l'ulteriore aumento dell'umidità. Questo 
andamento riflette probabilmente un equilibrio tra la disponibilità di combustibile e 
l’umidità; le aree moderatamente umide possono supportare una maggiore vegetazione, 
fornendo combustibile sufficiente per gli incendi boschivi, mentre le aree molto secche 
mancano di biomassa e le aree molto umide trattengono troppa umidità per sostenere la 
propagazione degli incendi boschivi. 

Il pericolo di incendio boschivo aumenta con valori di TPI più elevati, il che significa che è più 
probabile che si verifichino incendi boschivi in terreni elevati come creste e pendii superiori. 
Questo andamento deriva probabilmente da una maggiore esposizione al vento, da un 
migliore drenaggio che riduce la ritenzione di umidità e da una maggiore radiazione solare 
che promuove condizioni più asciutte, mentre valori di TPI più bassi (pianure/pendii inferiori 
e valli/depressioni) trattengono più umidità, rendendoli meno soggetti a incendi boschivi. 



 

 
Figura 5 Le curve di risposta indicanti l’impatto di ciascuna variabile sulla previsione del modello Maxent. In rosso la risposta 

media dei cinque modelli replicati, ± la deviazione standard (in blu). 



 

I livelli finali del pericolo attuale e futuro di incendi boschivi sono stati classificati in cinque 
livelli (basso, moderato, alto, significativamente alto ed estremamente alto) in base 
all'intervallo definito, di dimensioni pari a 0,20 (Fig. 6). Le cinque classi con diversi livelli di 
pericolosità classificata rappresentano rispettivamente il 22,71%, il 38,20%, il 23,00%, il 
10,30% e il 5,78% dell'area di studio (Tabella 10). La maggior parte dell'area di studio è 
coperta da aree classificate a pericolosità moderata, che coprono il 38,20% dell'area totale. 
Seguono le aree con pericolosità elevata (23,00%) e bassa (22,71%). Le aree con pericolosità 
significativamente ed estremamente alta rappresentano rispettivamente il 10,30% e il 5,78% 
(Tabella 10). È evidente che le aree classificate come zone di pericolo di incendi boschivi 
significativamente elevato e superiore rappresentano una percentuale relativamente bassa 
(16,08%) dell'area di studio. 

Nello scenario futuro di pericolo di incendi boschivi, i cinque livelli rappresentano 
rispettivamente il 26,83%, il 40,16%, il 21,25%, l'8,24% e il 3,51% dell'area di studio (Tabella 
10). Analogamente all'attuale pericolo di incendi boschivi, la maggior parte dell'area di studio 
rimane nella categoria di pericolo di incendi boschivi moderato, coprendo il 40,16% dell'area 
totale. Tuttavia, l'area classificata a basso pericolo di incendi boschivi è aumentata del 
4,12%, raggiungendo il 26,83%, mentre la categoria di pericolo di incendi boschivi elevato è 
leggermente diminuita, attestandosi al 21,25%. In particolare, la percentuale di aree 
classificate a pericolo di incendi boschivi significativamente elevato ed estremamente 
elevato è diminuita, rispettivamente, dal 2,06% e dal 2,27% all'8,24% e al 3,51% (Tabella 10). 
Ciò indica che in futuro si osserverà uno spostamento globale della pericolosità di incendi 
boschivi verso livelli più bassi, con un minor numero di aree soggette a condizioni di 
pericolosità significativamente o estremamente elevata. 

Un’analisi della distribuzione spaziale delle zone di pericolosità rivela una considerevole 
variazione geografica del rischio di incendi boschivi all'interno dell'area di studio. Le aree con 
pericolo di incendio elevato, significativamente elevato ed estremamente elevato sono 
distribuite prevalentemente lungo la costa e attorno ai maggiori insediamenti, dove la 
densità di strade e ferrovie è maggiore. Le proiezioni indicano che nelle proiezioni climatiche 
future il pericolo di incendi boschivi diminuirà nelle regioni costiere, mentre aumenterà nelle 
aree interne (Fig. 6). 



 

 

Figura 6 Carta del pericolo di incendi boschivi nelle condizioni climatiche attuali, a destra, e future, a sinistra. 

 

Tabella 10: Area (km2) delle classi di pericolo nell’area studio secondo le condizioni climatiche odierne e future e lor percentuale 
sul totale (%). 

 Pericolo odierno Pericolo futuro Differenza 

Area Percentuale Area Area 
Percentual

e 
Area 

Bassa 228,36 22,71 269,78 26,83 41,42 4,12 

Moderata 384,10 38,20 403,83 40,16 19,73 1,96 

Elevata 231,28 23,00 213,67 21,25 -17,61 -1,75 

Significativamente 
elevata 

103,60 10,30 82,88 8,24 -20,72 -2,06 

Estremamente 
elevata 

58,12 5,78 35,30 3,51 22,82 -2,27 

Totale 1005,46 100 1005,46 100 / / 

 
 



 

3.6​Valutazione della vulnerabilità agli incendi boschivi 

Il processo di confronto a coppie AHP è stato eseguito con successo, ottenendo indici di 
coerenza ben al di sotto della soglia critica di 0,01. I pesi di ciascuna variabile e le relative 
categorie risultanti dall'AHP sono riportati nella Tabella 11. La categoria di variabili più 
importante è quella antropica, come ampiamente dimostrato anche in studi precedenti 
(Djabri et al., 2024; Gigović et al., 2018; Sivrikaya & Küçük, 2022), con un peso complessivo 
del 51%. Tra le variabili antropiche, la più rilevante è la distanza dalle strade (37%), seguita 
dalla distanza dagli insediamenti (9%) e dalle ferrovie (5%). Al secondo posto si colloca la 
categoria di variabili ambientali, rappresentata dalla variabile copertura del suolo con un 
peso del 31,5%. Le categorie topografica (con l'11,6%) e climatica (con il 5,8%) sono le due 
meno rilevanti. 
 
Tabella 11: Risultati del confronto a coppie delle variabili esplicative e delle categorie di variabili. Nella colonna a destra il peso 
finale di ciascuna variabile, prodotto di entrambi gli step dell’AHP. 

  Variabili Categoria Peso finale 

Distanza da strade 0,72 

0,511 

0,3679 

Distanza da ferrovie 0,1 0,0511 

Distanza da insediamenti 0,18 0,092 

Pendenza 0,42 

0,116 

0,0486 

Orientamento del terreno 0,42 0,0493 

TWI 0,09 0,0101 

TPI 0,07 0,0084 

Temperatura 0,75 
0,058 

0,0432 

Precipitazioni 0,25 0,0144 

Copertura del suolo  - 0,315 0,31 

Le carte di vulnerabilità (Figura 7) mostrano che, nelle attuali condizioni climatiche, la 
maggior parte dell'area di studio rientra nella classe di vulnerabilità significativamente 



 

elevata (67%), seguita dalle aree di vulnerabilità estrema (25%) (Tabella 12). Considerando le 
proiezioni climatiche future, le aree caratterizzate da una vulnerabilità estremamente 
elevata aumentano fino al 30%, a scapito di quelle caratterizzate da una vulnerabilità 
significativamente elevata (62%) (Tabella 12). 

Figura 7 

Carta della vulnerabilità nelle condizioni climatiche odierne, sulla sinistra, e secondo le proiezioni climatiche future, sulla destra. 
 
 
 
 
 
 
 
 
 
Tabella 12: Area (km2) delle classi di vulnerabilità nell’area studio secondo le condizioni climatiche odierne e future e percentuale 
sul totale (%). 

  
Vulnerabilità odierna Vulnerabilità futura Differenza 

Area Percentuale Area Percentuale Area Percentuale 

Bassa 0,04 0,004 0,02 0,002 -0,02 -0,001 

Moderata 25,1 2,49 21,2 2,11 -3,86 -0,38 

Elevata 44,8 4,46 43,3 4,31 -1,52 -0,15 



 

Significativamente 
elevata 

679,4 67,58 630,4 62,70 
-49,0
4 

-4,87 

Estremamente 
elevata 

256,1 25,47 310,4 30,87 
54,3
2 

5,40 

Totale 1005,5 100,00 1005,5 100,00 - - 

Le variabili climatiche sembrano comunque essere la categoria meno impattante sulla 
vulnerabilità agli incendi boschivi nel nostro scenario. Infatti, i layer di dati climatici utilizzati 
nello studio tengono conto solo dei valori medi annui di temperatura e dei valori cumulativi 
annui di precipitazione. La mancanza di una distribuzione dei dati nell'arco dell'anno non 
consente di distinguere gli andamenti meteorologici stagionali, che potrebbero celare la 
presenza di periodi più lunghi caratterizzati da clima secco e caldo. Inoltre, le proiezioni della 
quantità e della distribuzione delle precipitazioni durante le stagioni sono più difficili da 
stabilire a causa dell'elevato numero di variabili coinvolte e sono per lo più non significative 
per il periodo futuro più prossimo (Bertalanič et al., 2018). 

 

3.7​Considerazioni sulla distribuzione spaziale dei punti di innesco 
degli incendi passati e sulla validazione delle carte di pericolo e di 
vulnerabilità  

Gli incendi boschivi possono avere origine in numerosi modi, sia naturali che antropici. 
L’istogramma (Fig. 8) mostra la percentuale delle varie cause di incendi boschivi nel Carso, 
confrontando le statistiche complessive (grigio) con i dati di Italia (verde) e Slovenia (blu). La 
categoria più numerosa è quella degli incendi di origine sconosciuta (non classificati), che 
rappresenta oltre la metà di tutti i casi, con l'Italia (65,8%) che presenta una percentuale 
maggiore rispetto alla Slovenia (34,1%). Gli incendi boschivi accidentali (di origine antropica) 
sono più frequenti in Slovenia (33,4%) che in Italia (10,6%), il che suggerisce una maggiore 
incidenza di incendi di origine antropica in quella parte della regione. Al contrario, gli incendi 
boschivi di origine naturale (causati da fulmini) si verificano a tassi simili in entrambi i Paesi, 
intorno al 17-19%. Gli incendi dolosi intenzionali, sebbene generalmente meno frequenti, 
sono notevolmente più elevati in Slovenia (18,1%) rispetto all'Italia (4,5%). Queste variazioni 



 

evidenziano differenze regionali nelle fonti di innesco degli incendi boschivi, che possono 
essere influenzate dall'uso del suolo, dalle misure di prevenzione degli incendi boschivi, da 
fattori socio-economici e dalle modalità di registrazione dei dati sugli incendi boschivi. In 
Slovenia, le cause degli incendi boschivi sono suddivise in nove categorie (Evidenca gozdnih 
požarov, 2024), mentre il livello degli incendi boschivi italiani è suddiviso in quattro categorie 
(RAFVG, 2024). 

Per facilitare il confronto, è stata utilizzata la categorizzazione italiana delle cause, unendo 
nella categoria "accidentali (antropici)” le seguenti categorie per gli incendi boschivi 
registrate in Slovenia: lavori forestali, industria, lavori agricoli, comunicazioni (ferrovie, linee 
elettriche, ecc.) e visitatori (turisti, bambini, ecc.), altro (militari, ecc.) 

 

Figura 8 La percentuale di cause di incendi boschivi nella regione del Carso, confrontando le statistiche complessive (grigio) con i 
dati di Italia (verde) e Slovenia (blu).  

 

Il grafico delle serie temporali (Fig. 9) mostra il numero di incendi boschivi nell'area di studio 
dal 1990 al 2024. I dati rivelano una significativa variabilità interannuale, con picchi nel 
numero di incendi boschivi negli anni 1993, 1998, 2003, 2006 e 2013, quando gli incendi 



 

hanno superato quota 100. Questi picchi corrispondono principalmente a condizioni 
meteorologiche estreme (ad esempio, siccità e ondate di calore) verificatesi nella regione 
dell'area di studio (Sušnik et al., 2023). Dopo il 2014, si osserva una generale tendenza al 
calo degli incendi boschivi, sebbene persistano alcune fluttuazioni. Il basso numero di 
incendi negli ultimi anni potrebbe essere attribuito a una migliore gestione degli incendi 
boschivi, a strategie di prevenzione o a variazioni climatiche che riducono le condizioni 
favorevoli agli incendi. Tuttavia, l'aumento nel 2022 suggerisce che il rischio di incendi 
boschivi resta comunque episodico e dipendente da fattori ambientali e antropici. 
Comprendere queste fluttuazioni è essenziale per mitigare in futuro il rischio di incendi 
boschivi nella regione. 

 

Figura 9 Numero di incendi boschivi negli anni sul Carso, Italiano e sloveno. 

L'analisi degli incendi boschivi passati (n = 2.367) in relazione alle infrastrutture e alla 
copertura del suolo fornisce informazioni preziose sui pattern di incidenza degli incendi 
boschivi nell'area di studio. La vicinanza a strade, strade forestali e sentieri escursionistici, 
gioca un ruolo significativo nell'innesco degli incendi boschivi, rappresentando il fattore più 
critico. Nelle loro immediate vicinanze (fascia di 50 m) si è verificato infatti il 67,4% (n = 
1.595) degli incendi. In media, gli incendi boschivi si sono verificati a una distanza di 52,52 m 



 

dalle strade. Ciò evidenzia la forte correlazione tra l'innesco degli incendi boschivi e le reti di 
trasporto. Le strade possono fungere da fonti di innesco a causa dell'attività antropica (ad 
esempio, scarto di mozziconi di sigarette, scintille provenienti dai veicoli). Inoltre, il 14,1% 
degli incendi boschivi (n = 334) si è verificato entro una fascia di 50 m dalle ferrovie, il che 
suggerisce che le ferrovie, sebbene meno influenti delle strade, svolgono comunque un 
ruolo rilevante nell'innesco di incendi boschivi, probabilmente a causa delle scintille 
generate dai treni. La distanza media di tutti gli incendi dalle ferrovie è molto maggiore, 
1.598,5 m, conseguenza di una rete ferroviaria meno densa nell'area di studio. Anche la 
vicinanza agli insediamenti contribuisce all'innesco di incendi boschivi visto che il 16,2% (n = 
383) di questi si è verificato entro una fascia di 50 m da essi. La distanza media dagli 
insediamenti è di 403,3 m. 

Gli incendi boschivi sono predominanti nelle seguenti categorie di copertura del suolo: aree 
seminaturali e incolte (39,8%) e foreste di latifoglie (36,9%). Seguono le aree agricole (9,4%) e 
le foreste di conifere (8,9%). I terreni artificiali (4,4%) e altre aree naturali (0,6%) hanno 
mostrato una minore incidenza di incendi boschivi. 

L'accuratezza della probabilità di incendio boschivo è stata stimata anche confrontando i 
punti di innesco degli incendi boschivi con le categorie di pericolosità. Il 41,3% degli incendi 
boschivi passati ricade in aree appartenenti alla categoria di pericolo "estremamente 
elevato", seguita da quella "significativamente elevato" (21,7%) e "elevato" (21,3%). Ciò 
conferma che gli incendi boschivi osservati corrispondono alle aree a più alta pericolosità 
previste dal modello. Nelle attuali condizioni climatiche, le aree a vulnerabilità significativa 
ed estremamente elevata rappresentano invece il 98,6% degli incendi boschivi passati, 
percentuale che aumenterà fino al 98,9% nelle condizioni climatiche future (Fig. 10). 



 

 

Figura 10 Distribuzione degli incendi boschivi passati nelle rispettive classi di vulnerabilità. 

La carta della vulnerabilità è stata sovrapposta ai punti di innesco degli incendi boschivi (Fig. 
11), rivelando che il 42% dei punti di innesco degli incendi boschivi del passato si è verificato 
in aree classificate come estremamente vulnerabili, mentre il 56% si è verificato in aree 
classificate come significativamente vulnerabili. Questo risultato indica che l'analisi della 
vulnerabilità ha identificato accuratamente le aree più soggette a incendi boschivi. 



 

 
Figura 11 L'attuale carta della vulnerabilità degli incendi boschivi con la sovrapposizione dei punti di innesco degli incendi boschivi 

del passato, in nero.  



 

3.8​Punti salienti e approfondimenti sugli approcci adottati per 
l’analisi del pericolo e della vulnerabilità agli incendi boschivi 

Le carte di vulnerabilità e di pericolo ottenute sono notevolmente diverse. Mentre infatti 
l'analisi della vulnerabilità ha identificato come aree di vulnerabilità significativamente ed 
estremamente elevata il 93% dell'area di studio che rientra in aree ad alta vulnerabilità, le 
due classi di pericolo più elevato costituiscono solamente il 16% dell'intera area di studio 
nell'analisi del pericolo di incendio. Ciò è probabilmente dovuto alla distribuzione spaziale 
degli incendi boschivi passati, particolarmente concentrata in un’area ristretta rispetto 
all’intera area studio. Il dataset di input è stato appositamente ridotto da 2367 a 1206 punti 
per ridurne l’effetto distorsivo sul modello. La modellazione MaxEnt sembra essere più 
indicata per le analisi del pericolo di incendio boschivo, appunto perché è focalizzata sulla 
probabilità di accadimento di incendi boschivi. D'altra parte, l'analisi di vulnerabilità 
distribuisce equamente le aree ad alta vulnerabilità in tutta l’area studio, 
indipendentemente dagli eventi di incendio passati, fornendo così informazioni, oltre che 
sulle aree in cui è più probabile che gli incendi boschivi si inneschino, anche su dove è più 
probabile che si propaghino una volta innescati. 

Un'altra differenza fondamentale tra i due metodi è la proiezione futura della probabilità di 
rischio di incendi boschivi e della loro vulnerabilità. Nello specifico, l'analisi di vulnerabilità 
prevede un aumento delle aree classificate a vulnerabilità estremamente elevata, dal 25% al 
30% dell'area totale, mentre l'analisi di pericolosità ha previsto una diminuzione della 
probabilità di incendi boschivi nello scenario climatico futuro. Ciò è verosimilmente dovuto 
al fatto che, come risulta dall'AHP nell’analisi di vulnerabilità, alla temperatura e alle 
precipitazioni viene attribuito un peso rispettivamente del 4,32% e dell'1,44%. L'analisi indica 
che la temperatura ha un impatto tre volte superiore a quello delle precipitazioni sulla 
vulnerabilità finale, mentre l'analisi di pericolosità MaxEnt assegna alla temperatura e alla 
precipitazione un contributo rispettivamente del 2,8% e del 7,0%. Secondo le proiezioni 
climatiche future, è previsto che entrambe le variabili aumenteranno, ma ciascuna ha un 
effetto opposto sugli incendi boschivi. A seconda di quale delle due prevalga in ciascun 
approccio, i risultati saranno contraddittori. 



 

Entrambi gli approcci si sono dimostrati strumenti efficaci per la mappatura della 
pericolosità e della vulnerabilità agli incendi boschivi, concentrandosi su diverse 
caratteristiche del rischio. La loro efficacia nell'analisi del rischio di incendio boschivo può 
quindi essere massimizzata integrando i rispettivi risultati. La modellazione MaxEnt ha 
fornito preziose informazioni attraverso le curve di risposta, dimostrando che la probabilità 
di incendi boschivi è maggiore sui pendii esposti a sud e sud-ovest, nelle aree forestali 
seminaturali e di conifere e nelle regioni con precipitazioni e pendenze moderate. Inoltre, la 
probabilità di rischio di incendi boschivi ha mostrato anche una forte correlazione negativa 
con la distanza da strade, ferrovie e insediamenti, sottolineando il ruolo critico delle 
infrastrutture nell'innesco degli incendi boschivi.  

 



 

CONCLUSIONE 

Il modello del pericolo di incendi boschivi basato su MaxEnt ha mostrato buone prestazioni, 
con un valore medio di AUC pari a 0,754 (± 0,014), superiore alla soglia di 0,75 di validità 
statistica. La distanza dalle strade è stata individuata come la variabile più influente, 
seguita dalla copertura del suolo e dalla distanza dalle ferrovie, confermando 
l'importanza assoluta dei fattori antropici nel determinare il pericolo di incendio. Le variabili 
topografiche come esposizione, TPI e TWI hanno contribuito invece in misura minore. La 
valutazione del pericolo con modelli MaxEnt permette di generare sulla base dei dati di 
presenza degli incendi passati delle curve di risposta per ogni variabile, che si rivelano 
fondamentali per comprendere meglio le dinamiche dei fattori che influenzano il pericolo di 
incendi. Il confronto con i dati reali ha infatti mostrato una forte corrispondenza con le aree 
classificate dal modello come di pericolo elevato, confermandone l’affidabilità. 

Allo stesso modo, l’analisi della vulnerabilità attraverso il metodo MCDA/AHP ha 
identificato correttamente le aree a vulnerabilità significativamente elevata ed 
estremamente elevata, che comprendono insieme il 98,6% degli incendi passati. Anche 
in questo caso, il fattore più influente è stato la distanza dalle strade, seguito dalla copertura 
del suolo. 

L’analisi spaziale ha rivelato che le aree ad alto pericolo di incendio si concentrano lungo la 
costa e vicino agli insediamenti più grandi, dove la densità delle infrastrutture è maggiore. 
Una parte significativa degli incendi (67,4%) si è verificata infatti entro un raggio di 50 metri 
dalle strade, mentre il 14,1% in prossimità delle ferrovie e il 16,2% degli insediamenti. Gli 
incendi sono stati più frequenti nelle aree vegetate incolte (39,8%) e nelle foreste di latifoglie 
(36,9%), a conferma del ruolo chiave che gioca la disponibilità di combustibile. 

Nonostante entrambe le analisi siano state condotte utilizzando le stesse variabili in input, i 
risultati sono alquanto diversi per quanto riguarda la distribuzione spaziale delle aree a più 
alto rischio: 



 

●​ L’analisi della vulnerabilità ha identificato il 93% dell’area di studio come 
significativamente o estremamente vulnerabile. 

●​ Invece, queste due classi coprono solo il 16% dell’area nello scenario di pericolo di 
incendio. 

Ciò avviene perché l’analisi del pericolo si basa maggiormente sulla probabilità storica di 
innesco degli incendi, mentre l’analisi della vulnerabilità distribuisce uniformemente le zone 
di elevata vulnerabilità su tutta l’area studio basandosi solo sui fattori statici che vi 
concorrono. 
 
Inoltre, ci sono importanti differenze per quanto riguarda la valutazione dello scenario 
climatico futuro (2011–2040): 

●​ Secondo le analisi, le aree a vulnerabilità estremamente alta aumenteranno infatti 
del 5%; 

●​ La previsione del pericolo di incendi denota invece un calo in futuro. 

Questa differenza è dovuta verosimilmente al diverso peso attribuito nei due approcci alle 
variabili climatiche. Le variabili climatiche utilizzate in questo studio descrivono soltanto le 
medie annuali, di temperatura e di precipitazioni, il che rappresenta naturalmente un limite, 
poiché non consente di distinguere i pattern stagionali. 
 
Nel complesso, i risultati offrono quindi una solida base per sviluppare future strategie di 
riduzione del rischio di incendi boschivi. L’uso di variabili topografiche derivate da dati LiDAR 
ad alta risoluzione ha migliorato la precisione dei predittori legati al terreno, pur restando le 
variabili antropiche quelle predominanti. Le due analisi si completano a vicenda, offrendo 
prospettive differenti ma integrate per comprendere e gestire in modo più efficace il rischio 
di incendi nell’area carsica. Questo studio apre la strada ad ulteriori analisi che potrebbero 
includere la valutazione dell'esposizione al rischio di incendi boschivi, includendo così nelle 
analisi le aree sensibili dal punto di vista ambientale e socioeconomico.  
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